Рассчитать высоту треугольника со сторонами 74, 72 и 23
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{74 + 72 + 23}{2}} \normalsize = 84.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{84.5(84.5-74)(84.5-72)(84.5-23)}}{72}\normalsize = 22.9410382}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{84.5(84.5-74)(84.5-72)(84.5-23)}}{74}\normalsize = 22.3210101}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{84.5(84.5-74)(84.5-72)(84.5-23)}}{23}\normalsize = 71.8154239}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 74, 72 и 23 равна 22.9410382
Высота треугольника опущенная с вершины A на сторону BC со сторонами 74, 72 и 23 равна 22.3210101
Высота треугольника опущенная с вершины C на сторону AB со сторонами 74, 72 и 23 равна 71.8154239
Ссылка на результат
?n1=74&n2=72&n3=23
Найти высоту треугольника со сторонами 105, 85 и 83
Найти высоту треугольника со сторонами 29, 17 и 17
Найти высоту треугольника со сторонами 131, 105 и 103
Найти высоту треугольника со сторонами 137, 105 и 68
Найти высоту треугольника со сторонами 136, 108 и 107
Найти высоту треугольника со сторонами 98, 87 и 18
Найти высоту треугольника со сторонами 29, 17 и 17
Найти высоту треугольника со сторонами 131, 105 и 103
Найти высоту треугольника со сторонами 137, 105 и 68
Найти высоту треугольника со сторонами 136, 108 и 107
Найти высоту треугольника со сторонами 98, 87 и 18