Рассчитать высоту треугольника со сторонами 84, 83 и 19
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{84 + 83 + 19}{2}} \normalsize = 93}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{93(93-84)(93-83)(93-19)}}{83}\normalsize = 18.9640238}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{93(93-84)(93-83)(93-19)}}{84}\normalsize = 18.7382616}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{93(93-84)(93-83)(93-19)}}{19}\normalsize = 82.8428409}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 84, 83 и 19 равна 18.9640238
Высота треугольника опущенная с вершины A на сторону BC со сторонами 84, 83 и 19 равна 18.7382616
Высота треугольника опущенная с вершины C на сторону AB со сторонами 84, 83 и 19 равна 82.8428409
Ссылка на результат
?n1=84&n2=83&n3=19
Найти высоту треугольника со сторонами 136, 94 и 64
Найти высоту треугольника со сторонами 140, 85 и 68
Найти высоту треугольника со сторонами 114, 94 и 73
Найти высоту треугольника со сторонами 74, 67 и 45
Найти высоту треугольника со сторонами 149, 132 и 100
Найти высоту треугольника со сторонами 94, 65 и 42
Найти высоту треугольника со сторонами 140, 85 и 68
Найти высоту треугольника со сторонами 114, 94 и 73
Найти высоту треугольника со сторонами 74, 67 и 45
Найти высоту треугольника со сторонами 149, 132 и 100
Найти высоту треугольника со сторонами 94, 65 и 42