Рассчитать высоту треугольника со сторонами 75, 42 и 41
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{75 + 42 + 41}{2}} \normalsize = 79}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{79(79-75)(79-42)(79-41)}}{42}\normalsize = 31.7407297}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{79(79-75)(79-42)(79-41)}}{75}\normalsize = 17.7748086}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{79(79-75)(79-42)(79-41)}}{41}\normalsize = 32.5148939}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 75, 42 и 41 равна 31.7407297
Высота треугольника опущенная с вершины A на сторону BC со сторонами 75, 42 и 41 равна 17.7748086
Высота треугольника опущенная с вершины C на сторону AB со сторонами 75, 42 и 41 равна 32.5148939
Ссылка на результат
?n1=75&n2=42&n3=41
Найти высоту треугольника со сторонами 127, 111 и 46
Найти высоту треугольника со сторонами 91, 90 и 71
Найти высоту треугольника со сторонами 131, 85 и 64
Найти высоту треугольника со сторонами 96, 95 и 58
Найти высоту треугольника со сторонами 99, 55 и 47
Найти высоту треугольника со сторонами 127, 101 и 29
Найти высоту треугольника со сторонами 91, 90 и 71
Найти высоту треугольника со сторонами 131, 85 и 64
Найти высоту треугольника со сторонами 96, 95 и 58
Найти высоту треугольника со сторонами 99, 55 и 47
Найти высоту треугольника со сторонами 127, 101 и 29