Рассчитать высоту треугольника со сторонами 75, 71 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{75 + 71 + 59}{2}} \normalsize = 102.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{102.5(102.5-75)(102.5-71)(102.5-59)}}{71}\normalsize = 55.3604781}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{102.5(102.5-75)(102.5-71)(102.5-59)}}{75}\normalsize = 52.4079192}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{102.5(102.5-75)(102.5-71)(102.5-59)}}{59}\normalsize = 66.6202363}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 75, 71 и 59 равна 55.3604781
Высота треугольника опущенная с вершины A на сторону BC со сторонами 75, 71 и 59 равна 52.4079192
Высота треугольника опущенная с вершины C на сторону AB со сторонами 75, 71 и 59 равна 66.6202363
Ссылка на результат
?n1=75&n2=71&n3=59
Найти высоту треугольника со сторонами 120, 92 и 91
Найти высоту треугольника со сторонами 138, 120 и 32
Найти высоту треугольника со сторонами 107, 59 и 53
Найти высоту треугольника со сторонами 87, 87 и 29
Найти высоту треугольника со сторонами 141, 115 и 101
Найти высоту треугольника со сторонами 59, 54 и 26
Найти высоту треугольника со сторонами 138, 120 и 32
Найти высоту треугольника со сторонами 107, 59 и 53
Найти высоту треугольника со сторонами 87, 87 и 29
Найти высоту треугольника со сторонами 141, 115 и 101
Найти высоту треугольника со сторонами 59, 54 и 26