Рассчитать высоту треугольника со сторонами 76, 72 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{76 + 72 + 54}{2}} \normalsize = 101}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{101(101-76)(101-72)(101-54)}}{72}\normalsize = 51.5318956}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{101(101-76)(101-72)(101-54)}}{76}\normalsize = 48.8196906}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{101(101-76)(101-72)(101-54)}}{54}\normalsize = 68.7091942}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 76, 72 и 54 равна 51.5318956
Высота треугольника опущенная с вершины A на сторону BC со сторонами 76, 72 и 54 равна 48.8196906
Высота треугольника опущенная с вершины C на сторону AB со сторонами 76, 72 и 54 равна 68.7091942
Ссылка на результат
?n1=76&n2=72&n3=54
Найти высоту треугольника со сторонами 104, 92 и 15
Найти высоту треугольника со сторонами 119, 106 и 68
Найти высоту треугольника со сторонами 132, 94 и 47
Найти высоту треугольника со сторонами 83, 68 и 63
Найти высоту треугольника со сторонами 140, 124 и 110
Найти высоту треугольника со сторонами 144, 96 и 67
Найти высоту треугольника со сторонами 119, 106 и 68
Найти высоту треугольника со сторонами 132, 94 и 47
Найти высоту треугольника со сторонами 83, 68 и 63
Найти высоту треугольника со сторонами 140, 124 и 110
Найти высоту треугольника со сторонами 144, 96 и 67