Рассчитать высоту треугольника со сторонами 76, 75 и 17
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{76 + 75 + 17}{2}} \normalsize = 84}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{84(84-76)(84-75)(84-17)}}{75}\normalsize = 16.9750876}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{84(84-76)(84-75)(84-17)}}{76}\normalsize = 16.7517312}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{84(84-76)(84-75)(84-17)}}{17}\normalsize = 74.8900925}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 76, 75 и 17 равна 16.9750876
Высота треугольника опущенная с вершины A на сторону BC со сторонами 76, 75 и 17 равна 16.7517312
Высота треугольника опущенная с вершины C на сторону AB со сторонами 76, 75 и 17 равна 74.8900925
Ссылка на результат
?n1=76&n2=75&n3=17
Найти высоту треугольника со сторонами 146, 104 и 52
Найти высоту треугольника со сторонами 137, 129 и 67
Найти высоту треугольника со сторонами 131, 112 и 51
Найти высоту треугольника со сторонами 47, 47 и 33
Найти высоту треугольника со сторонами 106, 71 и 61
Найти высоту треугольника со сторонами 95, 81 и 81
Найти высоту треугольника со сторонами 137, 129 и 67
Найти высоту треугольника со сторонами 131, 112 и 51
Найти высоту треугольника со сторонами 47, 47 и 33
Найти высоту треугольника со сторонами 106, 71 и 61
Найти высоту треугольника со сторонами 95, 81 и 81