Рассчитать высоту треугольника со сторонами 77, 66 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{77 + 66 + 39}{2}} \normalsize = 91}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{91(91-77)(91-66)(91-39)}}{66}\normalsize = 38.9980104}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{91(91-77)(91-66)(91-39)}}{77}\normalsize = 33.426866}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{91(91-77)(91-66)(91-39)}}{39}\normalsize = 65.9966329}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 77, 66 и 39 равна 38.9980104
Высота треугольника опущенная с вершины A на сторону BC со сторонами 77, 66 и 39 равна 33.426866
Высота треугольника опущенная с вершины C на сторону AB со сторонами 77, 66 и 39 равна 65.9966329
Ссылка на результат
?n1=77&n2=66&n3=39
Найти высоту треугольника со сторонами 133, 125 и 106
Найти высоту треугольника со сторонами 120, 95 и 46
Найти высоту треугольника со сторонами 122, 84 и 42
Найти высоту треугольника со сторонами 126, 125 и 99
Найти высоту треугольника со сторонами 65, 65 и 3
Найти высоту треугольника со сторонами 89, 76 и 38
Найти высоту треугольника со сторонами 120, 95 и 46
Найти высоту треугольника со сторонами 122, 84 и 42
Найти высоту треугольника со сторонами 126, 125 и 99
Найти высоту треугольника со сторонами 65, 65 и 3
Найти высоту треугольника со сторонами 89, 76 и 38