Рассчитать высоту треугольника со сторонами 77, 70 и 11
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{77 + 70 + 11}{2}} \normalsize = 79}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{79(79-77)(79-70)(79-11)}}{70}\normalsize = 8.88456584}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{79(79-77)(79-70)(79-11)}}{77}\normalsize = 8.07687804}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{79(79-77)(79-70)(79-11)}}{11}\normalsize = 56.5381463}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 77, 70 и 11 равна 8.88456584
Высота треугольника опущенная с вершины A на сторону BC со сторонами 77, 70 и 11 равна 8.07687804
Высота треугольника опущенная с вершины C на сторону AB со сторонами 77, 70 и 11 равна 56.5381463
Ссылка на результат
?n1=77&n2=70&n3=11
Найти высоту треугольника со сторонами 136, 131 и 15
Найти высоту треугольника со сторонами 64, 64 и 60
Найти высоту треугольника со сторонами 65, 62 и 24
Найти высоту треугольника со сторонами 97, 83 и 73
Найти высоту треугольника со сторонами 134, 97 и 63
Найти высоту треугольника со сторонами 115, 100 и 51
Найти высоту треугольника со сторонами 64, 64 и 60
Найти высоту треугольника со сторонами 65, 62 и 24
Найти высоту треугольника со сторонами 97, 83 и 73
Найти высоту треугольника со сторонами 134, 97 и 63
Найти высоту треугольника со сторонами 115, 100 и 51