Рассчитать высоту треугольника со сторонами 79, 59 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{79 + 59 + 35}{2}} \normalsize = 86.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{86.5(86.5-79)(86.5-59)(86.5-35)}}{59}\normalsize = 32.4927621}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{86.5(86.5-79)(86.5-59)(86.5-35)}}{79}\normalsize = 24.2667464}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{86.5(86.5-79)(86.5-59)(86.5-35)}}{35}\normalsize = 54.7735133}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 79, 59 и 35 равна 32.4927621
Высота треугольника опущенная с вершины A на сторону BC со сторонами 79, 59 и 35 равна 24.2667464
Высота треугольника опущенная с вершины C на сторону AB со сторонами 79, 59 и 35 равна 54.7735133
Ссылка на результат
?n1=79&n2=59&n3=35
Найти высоту треугольника со сторонами 106, 102 и 13
Найти высоту треугольника со сторонами 129, 110 и 100
Найти высоту треугольника со сторонами 96, 79 и 70
Найти высоту треугольника со сторонами 76, 68 и 37
Найти высоту треугольника со сторонами 108, 96 и 90
Найти высоту треугольника со сторонами 79, 67 и 50
Найти высоту треугольника со сторонами 129, 110 и 100
Найти высоту треугольника со сторонами 96, 79 и 70
Найти высоту треугольника со сторонами 76, 68 и 37
Найти высоту треугольника со сторонами 108, 96 и 90
Найти высоту треугольника со сторонами 79, 67 и 50