Рассчитать высоту треугольника со сторонами 79, 62 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{79 + 62 + 59}{2}} \normalsize = 100}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{100(100-79)(100-62)(100-59)}}{62}\normalsize = 58.3487666}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{100(100-79)(100-62)(100-59)}}{79}\normalsize = 45.7927029}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{100(100-79)(100-62)(100-59)}}{59}\normalsize = 61.315653}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 79, 62 и 59 равна 58.3487666
Высота треугольника опущенная с вершины A на сторону BC со сторонами 79, 62 и 59 равна 45.7927029
Высота треугольника опущенная с вершины C на сторону AB со сторонами 79, 62 и 59 равна 61.315653
Ссылка на результат
?n1=79&n2=62&n3=59
Найти высоту треугольника со сторонами 74, 56 и 24
Найти высоту треугольника со сторонами 127, 122 и 35
Найти высоту треугольника со сторонами 143, 115 и 59
Найти высоту треугольника со сторонами 143, 125 и 72
Найти высоту треугольника со сторонами 115, 111 и 96
Найти высоту треугольника со сторонами 121, 92 и 81
Найти высоту треугольника со сторонами 127, 122 и 35
Найти высоту треугольника со сторонами 143, 115 и 59
Найти высоту треугольника со сторонами 143, 125 и 72
Найти высоту треугольника со сторонами 115, 111 и 96
Найти высоту треугольника со сторонами 121, 92 и 81