Рассчитать высоту треугольника со сторонами 79, 78 и 9

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{79 + 78 + 9}{2}} \normalsize = 83}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{83(83-79)(83-78)(83-9)}}{78}\normalsize = 8.98680456}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{83(83-79)(83-78)(83-9)}}{79}\normalsize = 8.87304754}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{83(83-79)(83-78)(83-9)}}{9}\normalsize = 77.8856395}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 79, 78 и 9 равна 8.98680456
Высота треугольника опущенная с вершины A на сторону BC со сторонами 79, 78 и 9 равна 8.87304754
Высота треугольника опущенная с вершины C на сторону AB со сторонами 79, 78 и 9 равна 77.8856395
Ссылка на результат
?n1=79&n2=78&n3=9