Рассчитать высоту треугольника со сторонами 80, 58 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{80 + 58 + 37}{2}} \normalsize = 87.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{87.5(87.5-80)(87.5-58)(87.5-37)}}{58}\normalsize = 34.095209}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{87.5(87.5-80)(87.5-58)(87.5-37)}}{80}\normalsize = 24.7190265}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{87.5(87.5-80)(87.5-58)(87.5-37)}}{37}\normalsize = 53.4465439}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 80, 58 и 37 равна 34.095209
Высота треугольника опущенная с вершины A на сторону BC со сторонами 80, 58 и 37 равна 24.7190265
Высота треугольника опущенная с вершины C на сторону AB со сторонами 80, 58 и 37 равна 53.4465439
Ссылка на результат
?n1=80&n2=58&n3=37
Найти высоту треугольника со сторонами 69, 66 и 49
Найти высоту треугольника со сторонами 117, 101 и 64
Найти высоту треугольника со сторонами 140, 109 и 108
Найти высоту треугольника со сторонами 77, 52 и 50
Найти высоту треугольника со сторонами 147, 106 и 63
Найти высоту треугольника со сторонами 120, 97 и 97
Найти высоту треугольника со сторонами 117, 101 и 64
Найти высоту треугольника со сторонами 140, 109 и 108
Найти высоту треугольника со сторонами 77, 52 и 50
Найти высоту треугольника со сторонами 147, 106 и 63
Найти высоту треугольника со сторонами 120, 97 и 97