Рассчитать высоту треугольника со сторонами 80, 70 и 64
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{80 + 70 + 64}{2}} \normalsize = 107}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107(107-80)(107-70)(107-64)}}{70}\normalsize = 61.2548973}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107(107-80)(107-70)(107-64)}}{80}\normalsize = 53.5980352}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107(107-80)(107-70)(107-64)}}{64}\normalsize = 66.997544}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 80, 70 и 64 равна 61.2548973
Высота треугольника опущенная с вершины A на сторону BC со сторонами 80, 70 и 64 равна 53.5980352
Высота треугольника опущенная с вершины C на сторону AB со сторонами 80, 70 и 64 равна 66.997544
Ссылка на результат
?n1=80&n2=70&n3=64
Найти высоту треугольника со сторонами 133, 117 и 34
Найти высоту треугольника со сторонами 137, 115 и 48
Найти высоту треугольника со сторонами 138, 81 и 67
Найти высоту треугольника со сторонами 101, 89 и 25
Найти высоту треугольника со сторонами 35, 35 и 20
Найти высоту треугольника со сторонами 108, 90 и 58
Найти высоту треугольника со сторонами 137, 115 и 48
Найти высоту треугольника со сторонами 138, 81 и 67
Найти высоту треугольника со сторонами 101, 89 и 25
Найти высоту треугольника со сторонами 35, 35 и 20
Найти высоту треугольника со сторонами 108, 90 и 58