Рассчитать высоту треугольника со сторонами 80, 72 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{80 + 72 + 30}{2}} \normalsize = 91}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{91(91-80)(91-72)(91-30)}}{72}\normalsize = 29.9196326}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{91(91-80)(91-72)(91-30)}}{80}\normalsize = 26.9276693}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{91(91-80)(91-72)(91-30)}}{30}\normalsize = 71.8071182}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 80, 72 и 30 равна 29.9196326
Высота треугольника опущенная с вершины A на сторону BC со сторонами 80, 72 и 30 равна 26.9276693
Высота треугольника опущенная с вершины C на сторону AB со сторонами 80, 72 и 30 равна 71.8071182
Ссылка на результат
?n1=80&n2=72&n3=30
Найти высоту треугольника со сторонами 134, 118 и 64
Найти высоту треугольника со сторонами 76, 60 и 57
Найти высоту треугольника со сторонами 47, 43 и 43
Найти высоту треугольника со сторонами 148, 121 и 108
Найти высоту треугольника со сторонами 48, 35 и 20
Найти высоту треугольника со сторонами 127, 81 и 79
Найти высоту треугольника со сторонами 76, 60 и 57
Найти высоту треугольника со сторонами 47, 43 и 43
Найти высоту треугольника со сторонами 148, 121 и 108
Найти высоту треугольника со сторонами 48, 35 и 20
Найти высоту треугольника со сторонами 127, 81 и 79