Рассчитать высоту треугольника со сторонами 80, 74 и 10
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{80 + 74 + 10}{2}} \normalsize = 82}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{82(82-80)(82-74)(82-10)}}{74}\normalsize = 8.30675577}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{82(82-80)(82-74)(82-10)}}{80}\normalsize = 7.68374908}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{82(82-80)(82-74)(82-10)}}{10}\normalsize = 61.4699927}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 80, 74 и 10 равна 8.30675577
Высота треугольника опущенная с вершины A на сторону BC со сторонами 80, 74 и 10 равна 7.68374908
Высота треугольника опущенная с вершины C на сторону AB со сторонами 80, 74 и 10 равна 61.4699927
Ссылка на результат
?n1=80&n2=74&n3=10
Найти высоту треугольника со сторонами 119, 101 и 69
Найти высоту треугольника со сторонами 56, 44 и 36
Найти высоту треугольника со сторонами 87, 65 и 41
Найти высоту треугольника со сторонами 50, 46 и 24
Найти высоту треугольника со сторонами 143, 125 и 64
Найти высоту треугольника со сторонами 147, 139 и 95
Найти высоту треугольника со сторонами 56, 44 и 36
Найти высоту треугольника со сторонами 87, 65 и 41
Найти высоту треугольника со сторонами 50, 46 и 24
Найти высоту треугольника со сторонами 143, 125 и 64
Найти высоту треугольника со сторонами 147, 139 и 95