Рассчитать высоту треугольника со сторонами 80, 74 и 61
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{80 + 74 + 61}{2}} \normalsize = 107.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107.5(107.5-80)(107.5-74)(107.5-61)}}{74}\normalsize = 57.99863}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107.5(107.5-80)(107.5-74)(107.5-61)}}{80}\normalsize = 53.6487327}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107.5(107.5-80)(107.5-74)(107.5-61)}}{61}\normalsize = 70.3589937}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 80, 74 и 61 равна 57.99863
Высота треугольника опущенная с вершины A на сторону BC со сторонами 80, 74 и 61 равна 53.6487327
Высота треугольника опущенная с вершины C на сторону AB со сторонами 80, 74 и 61 равна 70.3589937
Ссылка на результат
?n1=80&n2=74&n3=61
Найти высоту треугольника со сторонами 136, 120 и 40
Найти высоту треугольника со сторонами 124, 119 и 74
Найти высоту треугольника со сторонами 120, 106 и 88
Найти высоту треугольника со сторонами 120, 109 и 29
Найти высоту треугольника со сторонами 97, 93 и 38
Найти высоту треугольника со сторонами 89, 86 и 21
Найти высоту треугольника со сторонами 124, 119 и 74
Найти высоту треугольника со сторонами 120, 106 и 88
Найти высоту треугольника со сторонами 120, 109 и 29
Найти высоту треугольника со сторонами 97, 93 и 38
Найти высоту треугольника со сторонами 89, 86 и 21