Рассчитать высоту треугольника со сторонами 81, 57 и 45
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{81 + 57 + 45}{2}} \normalsize = 91.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{91.5(91.5-81)(91.5-57)(91.5-45)}}{57}\normalsize = 43.5608515}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{91.5(91.5-81)(91.5-57)(91.5-45)}}{81}\normalsize = 30.6539325}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{91.5(91.5-81)(91.5-57)(91.5-45)}}{45}\normalsize = 55.1770786}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 81, 57 и 45 равна 43.5608515
Высота треугольника опущенная с вершины A на сторону BC со сторонами 81, 57 и 45 равна 30.6539325
Высота треугольника опущенная с вершины C на сторону AB со сторонами 81, 57 и 45 равна 55.1770786
Ссылка на результат
?n1=81&n2=57&n3=45
Найти высоту треугольника со сторонами 83, 78 и 47
Найти высоту треугольника со сторонами 112, 97 и 38
Найти высоту треугольника со сторонами 21, 18 и 4
Найти высоту треугольника со сторонами 121, 80 и 42
Найти высоту треугольника со сторонами 95, 88 и 77
Найти высоту треугольника со сторонами 61, 46 и 27
Найти высоту треугольника со сторонами 112, 97 и 38
Найти высоту треугольника со сторонами 21, 18 и 4
Найти высоту треугольника со сторонами 121, 80 и 42
Найти высоту треугольника со сторонами 95, 88 и 77
Найти высоту треугольника со сторонами 61, 46 и 27