Рассчитать высоту треугольника со сторонами 84, 55 и 31
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{84 + 55 + 31}{2}} \normalsize = 85}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{85(85-84)(85-55)(85-31)}}{55}\normalsize = 13.4938002}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{85(85-84)(85-55)(85-31)}}{84}\normalsize = 8.83522634}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{85(85-84)(85-55)(85-31)}}{31}\normalsize = 23.9406133}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 84, 55 и 31 равна 13.4938002
Высота треугольника опущенная с вершины A на сторону BC со сторонами 84, 55 и 31 равна 8.83522634
Высота треугольника опущенная с вершины C на сторону AB со сторонами 84, 55 и 31 равна 23.9406133
Ссылка на результат
?n1=84&n2=55&n3=31
Найти высоту треугольника со сторонами 139, 128 и 125
Найти высоту треугольника со сторонами 142, 95 и 70
Найти высоту треугольника со сторонами 95, 94 и 23
Найти высоту треугольника со сторонами 133, 103 и 42
Найти высоту треугольника со сторонами 117, 97 и 49
Найти высоту треугольника со сторонами 56, 44 и 35
Найти высоту треугольника со сторонами 142, 95 и 70
Найти высоту треугольника со сторонами 95, 94 и 23
Найти высоту треугольника со сторонами 133, 103 и 42
Найти высоту треугольника со сторонами 117, 97 и 49
Найти высоту треугольника со сторонами 56, 44 и 35