Рассчитать высоту треугольника со сторонами 81, 74 и 21
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{81 + 74 + 21}{2}} \normalsize = 88}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{88(88-81)(88-74)(88-21)}}{74}\normalsize = 20.5442386}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{88(88-81)(88-74)(88-21)}}{81}\normalsize = 18.7688106}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{88(88-81)(88-74)(88-21)}}{21}\normalsize = 72.3939838}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 81, 74 и 21 равна 20.5442386
Высота треугольника опущенная с вершины A на сторону BC со сторонами 81, 74 и 21 равна 18.7688106
Высота треугольника опущенная с вершины C на сторону AB со сторонами 81, 74 и 21 равна 72.3939838
Ссылка на результат
?n1=81&n2=74&n3=21
Найти высоту треугольника со сторонами 141, 102 и 55
Найти высоту треугольника со сторонами 107, 67 и 44
Найти высоту треугольника со сторонами 117, 64 и 54
Найти высоту треугольника со сторонами 88, 60 и 60
Найти высоту треугольника со сторонами 61, 52 и 22
Найти высоту треугольника со сторонами 134, 116 и 66
Найти высоту треугольника со сторонами 107, 67 и 44
Найти высоту треугольника со сторонами 117, 64 и 54
Найти высоту треугольника со сторонами 88, 60 и 60
Найти высоту треугольника со сторонами 61, 52 и 22
Найти высоту треугольника со сторонами 134, 116 и 66