Рассчитать высоту треугольника со сторонами 81, 80 и 18

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{81 + 80 + 18}{2}} \normalsize = 89.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{89.5(89.5-81)(89.5-80)(89.5-18)}}{80}\normalsize = 17.9711477}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{89.5(89.5-81)(89.5-80)(89.5-18)}}{81}\normalsize = 17.7492816}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{89.5(89.5-81)(89.5-80)(89.5-18)}}{18}\normalsize = 79.8717674}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 81, 80 и 18 равна 17.9711477
Высота треугольника опущенная с вершины A на сторону BC со сторонами 81, 80 и 18 равна 17.7492816
Высота треугольника опущенная с вершины C на сторону AB со сторонами 81, 80 и 18 равна 79.8717674
Ссылка на результат
?n1=81&n2=80&n3=18