Рассчитать высоту треугольника со сторонами 82, 60 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{82 + 60 + 42}{2}} \normalsize = 92}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{92(92-82)(92-60)(92-42)}}{60}\normalsize = 40.4420024}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{92(92-82)(92-60)(92-42)}}{82}\normalsize = 29.591709}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{92(92-82)(92-60)(92-42)}}{42}\normalsize = 57.7742891}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 82, 60 и 42 равна 40.4420024
Высота треугольника опущенная с вершины A на сторону BC со сторонами 82, 60 и 42 равна 29.591709
Высота треугольника опущенная с вершины C на сторону AB со сторонами 82, 60 и 42 равна 57.7742891
Ссылка на результат
?n1=82&n2=60&n3=42
Найти высоту треугольника со сторонами 143, 110 и 107
Найти высоту треугольника со сторонами 85, 67 и 29
Найти высоту треугольника со сторонами 63, 63 и 11
Найти высоту треугольника со сторонами 60, 50 и 50
Найти высоту треугольника со сторонами 131, 107 и 98
Найти высоту треугольника со сторонами 120, 94 и 66
Найти высоту треугольника со сторонами 85, 67 и 29
Найти высоту треугольника со сторонами 63, 63 и 11
Найти высоту треугольника со сторонами 60, 50 и 50
Найти высоту треугольника со сторонами 131, 107 и 98
Найти высоту треугольника со сторонами 120, 94 и 66