Рассчитать высоту треугольника со сторонами 82, 70 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{82 + 70 + 37}{2}} \normalsize = 94.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{94.5(94.5-82)(94.5-70)(94.5-37)}}{70}\normalsize = 36.8569871}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{94.5(94.5-82)(94.5-70)(94.5-37)}}{82}\normalsize = 31.4632817}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{94.5(94.5-82)(94.5-70)(94.5-37)}}{37}\normalsize = 69.7294351}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 82, 70 и 37 равна 36.8569871
Высота треугольника опущенная с вершины A на сторону BC со сторонами 82, 70 и 37 равна 31.4632817
Высота треугольника опущенная с вершины C на сторону AB со сторонами 82, 70 и 37 равна 69.7294351
Ссылка на результат
?n1=82&n2=70&n3=37
Найти высоту треугольника со сторонами 141, 125 и 79
Найти высоту треугольника со сторонами 148, 104 и 54
Найти высоту треугольника со сторонами 86, 86 и 52
Найти высоту треугольника со сторонами 133, 99 и 59
Найти высоту треугольника со сторонами 149, 144 и 117
Найти высоту треугольника со сторонами 126, 115 и 109
Найти высоту треугольника со сторонами 148, 104 и 54
Найти высоту треугольника со сторонами 86, 86 и 52
Найти высоту треугольника со сторонами 133, 99 и 59
Найти высоту треугольника со сторонами 149, 144 и 117
Найти высоту треугольника со сторонами 126, 115 и 109