Рассчитать высоту треугольника со сторонами 82, 80 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{82 + 80 + 30}{2}} \normalsize = 96}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{96(96-82)(96-80)(96-30)}}{80}\normalsize = 29.7832168}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{96(96-82)(96-80)(96-30)}}{82}\normalsize = 29.0567968}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{96(96-82)(96-80)(96-30)}}{30}\normalsize = 79.4219113}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 82, 80 и 30 равна 29.7832168
Высота треугольника опущенная с вершины A на сторону BC со сторонами 82, 80 и 30 равна 29.0567968
Высота треугольника опущенная с вершины C на сторону AB со сторонами 82, 80 и 30 равна 79.4219113
Ссылка на результат
?n1=82&n2=80&n3=30
Найти высоту треугольника со сторонами 149, 132 и 29
Найти высоту треугольника со сторонами 146, 100 и 97
Найти высоту треугольника со сторонами 141, 134 и 113
Найти высоту треугольника со сторонами 128, 109 и 84
Найти высоту треугольника со сторонами 88, 83 и 83
Найти высоту треугольника со сторонами 109, 107 и 57
Найти высоту треугольника со сторонами 146, 100 и 97
Найти высоту треугольника со сторонами 141, 134 и 113
Найти высоту треугольника со сторонами 128, 109 и 84
Найти высоту треугольника со сторонами 88, 83 и 83
Найти высоту треугольника со сторонами 109, 107 и 57