Рассчитать высоту треугольника со сторонами 83, 57 и 54
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{83 + 57 + 54}{2}} \normalsize = 97}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{97(97-83)(97-57)(97-54)}}{57}\normalsize = 53.6252399}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{97(97-83)(97-57)(97-54)}}{83}\normalsize = 36.826972}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{97(97-83)(97-57)(97-54)}}{54}\normalsize = 56.6044199}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 83, 57 и 54 равна 53.6252399
Высота треугольника опущенная с вершины A на сторону BC со сторонами 83, 57 и 54 равна 36.826972
Высота треугольника опущенная с вершины C на сторону AB со сторонами 83, 57 и 54 равна 56.6044199
Ссылка на результат
?n1=83&n2=57&n3=54
Найти высоту треугольника со сторонами 126, 86 и 78
Найти высоту треугольника со сторонами 117, 112 и 74
Найти высоту треугольника со сторонами 96, 90 и 76
Найти высоту треугольника со сторонами 119, 116 и 115
Найти высоту треугольника со сторонами 79, 64 и 32
Найти высоту треугольника со сторонами 136, 118 и 98
Найти высоту треугольника со сторонами 117, 112 и 74
Найти высоту треугольника со сторонами 96, 90 и 76
Найти высоту треугольника со сторонами 119, 116 и 115
Найти высоту треугольника со сторонами 79, 64 и 32
Найти высоту треугольника со сторонами 136, 118 и 98