Рассчитать высоту треугольника со сторонами 83, 72 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{83 + 72 + 56}{2}} \normalsize = 105.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{105.5(105.5-83)(105.5-72)(105.5-56)}}{72}\normalsize = 55.1112157}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{105.5(105.5-83)(105.5-72)(105.5-56)}}{83}\normalsize = 47.8073196}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{105.5(105.5-83)(105.5-72)(105.5-56)}}{56}\normalsize = 70.8572773}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 83, 72 и 56 равна 55.1112157
Высота треугольника опущенная с вершины A на сторону BC со сторонами 83, 72 и 56 равна 47.8073196
Высота треугольника опущенная с вершины C на сторону AB со сторонами 83, 72 и 56 равна 70.8572773
Ссылка на результат
?n1=83&n2=72&n3=56
Найти высоту треугольника со сторонами 139, 118 и 41
Найти высоту треугольника со сторонами 97, 96 и 83
Найти высоту треугольника со сторонами 107, 82 и 82
Найти высоту треугольника со сторонами 131, 98 и 86
Найти высоту треугольника со сторонами 130, 110 и 63
Найти высоту треугольника со сторонами 138, 120 и 39
Найти высоту треугольника со сторонами 97, 96 и 83
Найти высоту треугольника со сторонами 107, 82 и 82
Найти высоту треугольника со сторонами 131, 98 и 86
Найти высоту треугольника со сторонами 130, 110 и 63
Найти высоту треугольника со сторонами 138, 120 и 39