Рассчитать высоту треугольника со сторонами 84, 52 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{84 + 52 + 39}{2}} \normalsize = 87.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{87.5(87.5-84)(87.5-52)(87.5-39)}}{52}\normalsize = 27.9286373}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{87.5(87.5-84)(87.5-52)(87.5-39)}}{84}\normalsize = 17.2891564}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{87.5(87.5-84)(87.5-52)(87.5-39)}}{39}\normalsize = 37.2381831}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 84, 52 и 39 равна 27.9286373
Высота треугольника опущенная с вершины A на сторону BC со сторонами 84, 52 и 39 равна 17.2891564
Высота треугольника опущенная с вершины C на сторону AB со сторонами 84, 52 и 39 равна 37.2381831
Ссылка на результат
?n1=84&n2=52&n3=39
Найти высоту треугольника со сторонами 47, 43 и 23
Найти высоту треугольника со сторонами 113, 94 и 41
Найти высоту треугольника со сторонами 69, 69 и 33
Найти высоту треугольника со сторонами 114, 105 и 94
Найти высоту треугольника со сторонами 119, 87 и 87
Найти высоту треугольника со сторонами 136, 108 и 90
Найти высоту треугольника со сторонами 113, 94 и 41
Найти высоту треугольника со сторонами 69, 69 и 33
Найти высоту треугольника со сторонами 114, 105 и 94
Найти высоту треугольника со сторонами 119, 87 и 87
Найти высоту треугольника со сторонами 136, 108 и 90