Рассчитать высоту треугольника со сторонами 84, 74 и 12
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{84 + 74 + 12}{2}} \normalsize = 85}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{85(85-84)(85-74)(85-12)}}{74}\normalsize = 7.06098862}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{85(85-84)(85-74)(85-12)}}{84}\normalsize = 6.22039473}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{85(85-84)(85-74)(85-12)}}{12}\normalsize = 43.5427631}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 84, 74 и 12 равна 7.06098862
Высота треугольника опущенная с вершины A на сторону BC со сторонами 84, 74 и 12 равна 6.22039473
Высота треугольника опущенная с вершины C на сторону AB со сторонами 84, 74 и 12 равна 43.5427631
Ссылка на результат
?n1=84&n2=74&n3=12
Найти высоту треугольника со сторонами 59, 37 и 32
Найти высоту треугольника со сторонами 142, 120 и 56
Найти высоту треугольника со сторонами 127, 85 и 68
Найти высоту треугольника со сторонами 121, 113 и 105
Найти высоту треугольника со сторонами 115, 101 и 15
Найти высоту треугольника со сторонами 60, 53 и 9
Найти высоту треугольника со сторонами 142, 120 и 56
Найти высоту треугольника со сторонами 127, 85 и 68
Найти высоту треугольника со сторонами 121, 113 и 105
Найти высоту треугольника со сторонами 115, 101 и 15
Найти высоту треугольника со сторонами 60, 53 и 9