Рассчитать высоту треугольника со сторонами 84, 79 и 11
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{84 + 79 + 11}{2}} \normalsize = 87}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{87(87-84)(87-79)(87-11)}}{79}\normalsize = 10.0849778}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{87(87-84)(87-79)(87-11)}}{84}\normalsize = 9.48468153}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{87(87-84)(87-79)(87-11)}}{11}\normalsize = 72.4284771}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 84, 79 и 11 равна 10.0849778
Высота треугольника опущенная с вершины A на сторону BC со сторонами 84, 79 и 11 равна 9.48468153
Высота треугольника опущенная с вершины C на сторону AB со сторонами 84, 79 и 11 равна 72.4284771
Ссылка на результат
?n1=84&n2=79&n3=11
Найти высоту треугольника со сторонами 47, 47 и 40
Найти высоту треугольника со сторонами 142, 121 и 40
Найти высоту треугольника со сторонами 124, 123 и 25
Найти высоту треугольника со сторонами 144, 130 и 66
Найти высоту треугольника со сторонами 131, 110 и 33
Найти высоту треугольника со сторонами 136, 112 и 75
Найти высоту треугольника со сторонами 142, 121 и 40
Найти высоту треугольника со сторонами 124, 123 и 25
Найти высоту треугольника со сторонами 144, 130 и 66
Найти высоту треугольника со сторонами 131, 110 и 33
Найти высоту треугольника со сторонами 136, 112 и 75