Рассчитать высоту треугольника со сторонами 85, 46 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{85 + 46 + 42}{2}} \normalsize = 86.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{86.5(86.5-85)(86.5-46)(86.5-42)}}{46}\normalsize = 21.0248722}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{86.5(86.5-85)(86.5-46)(86.5-42)}}{85}\normalsize = 11.3781661}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{86.5(86.5-85)(86.5-46)(86.5-42)}}{42}\normalsize = 23.027241}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 85, 46 и 42 равна 21.0248722
Высота треугольника опущенная с вершины A на сторону BC со сторонами 85, 46 и 42 равна 11.3781661
Высота треугольника опущенная с вершины C на сторону AB со сторонами 85, 46 и 42 равна 23.027241
Ссылка на результат
?n1=85&n2=46&n3=42
Найти высоту треугольника со сторонами 126, 96 и 52
Найти высоту треугольника со сторонами 136, 92 и 52
Найти высоту треугольника со сторонами 104, 77 и 32
Найти высоту треугольника со сторонами 99, 99 и 2
Найти высоту треугольника со сторонами 149, 112 и 62
Найти высоту треугольника со сторонами 50, 45 и 37
Найти высоту треугольника со сторонами 136, 92 и 52
Найти высоту треугольника со сторонами 104, 77 и 32
Найти высоту треугольника со сторонами 99, 99 и 2
Найти высоту треугольника со сторонами 149, 112 и 62
Найти высоту треугольника со сторонами 50, 45 и 37