Рассчитать высоту треугольника со сторонами 85, 52 и 39
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{85 + 52 + 39}{2}} \normalsize = 88}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{88(88-85)(88-52)(88-39)}}{52}\normalsize = 26.2468933}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{88(88-85)(88-52)(88-39)}}{85}\normalsize = 16.056923}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{88(88-85)(88-52)(88-39)}}{39}\normalsize = 34.9958577}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 85, 52 и 39 равна 26.2468933
Высота треугольника опущенная с вершины A на сторону BC со сторонами 85, 52 и 39 равна 16.056923
Высота треугольника опущенная с вершины C на сторону AB со сторонами 85, 52 и 39 равна 34.9958577
Ссылка на результат
?n1=85&n2=52&n3=39
Найти высоту треугольника со сторонами 101, 66 и 55
Найти высоту треугольника со сторонами 51, 50 и 30
Найти высоту треугольника со сторонами 143, 120 и 43
Найти высоту треугольника со сторонами 150, 139 и 127
Найти высоту треугольника со сторонами 96, 83 и 58
Найти высоту треугольника со сторонами 114, 65 и 54
Найти высоту треугольника со сторонами 51, 50 и 30
Найти высоту треугольника со сторонами 143, 120 и 43
Найти высоту треугольника со сторонами 150, 139 и 127
Найти высоту треугольника со сторонами 96, 83 и 58
Найти высоту треугольника со сторонами 114, 65 и 54