Рассчитать высоту треугольника со сторонами 85, 56 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{85 + 56 + 51}{2}} \normalsize = 96}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{96(96-85)(96-56)(96-51)}}{56}\normalsize = 49.2391084}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{96(96-85)(96-56)(96-51)}}{85}\normalsize = 32.4398832}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{96(96-85)(96-56)(96-51)}}{51}\normalsize = 54.066472}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 85, 56 и 51 равна 49.2391084
Высота треугольника опущенная с вершины A на сторону BC со сторонами 85, 56 и 51 равна 32.4398832
Высота треугольника опущенная с вершины C на сторону AB со сторонами 85, 56 и 51 равна 54.066472
Ссылка на результат
?n1=85&n2=56&n3=51
Найти высоту треугольника со сторонами 113, 111 и 7
Найти высоту треугольника со сторонами 120, 110 и 13
Найти высоту треугольника со сторонами 128, 109 и 79
Найти высоту треугольника со сторонами 127, 103 и 74
Найти высоту треугольника со сторонами 125, 104 и 92
Найти высоту треугольника со сторонами 115, 95 и 64
Найти высоту треугольника со сторонами 120, 110 и 13
Найти высоту треугольника со сторонами 128, 109 и 79
Найти высоту треугольника со сторонами 127, 103 и 74
Найти высоту треугольника со сторонами 125, 104 и 92
Найти высоту треугольника со сторонами 115, 95 и 64