Рассчитать высоту треугольника со сторонами 85, 75 и 62

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{85 + 75 + 62}{2}} \normalsize = 111}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{111(111-85)(111-75)(111-62)}}{75}\normalsize = 60.1680846}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{111(111-85)(111-75)(111-62)}}{85}\normalsize = 53.0894864}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{111(111-85)(111-75)(111-62)}}{62}\normalsize = 72.7839733}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 85, 75 и 62 равна 60.1680846
Высота треугольника опущенная с вершины A на сторону BC со сторонами 85, 75 и 62 равна 53.0894864
Высота треугольника опущенная с вершины C на сторону AB со сторонами 85, 75 и 62 равна 72.7839733
Ссылка на результат
?n1=85&n2=75&n3=62