Рассчитать высоту треугольника со сторонами 85, 78 и 15
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{85 + 78 + 15}{2}} \normalsize = 89}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{89(89-85)(89-78)(89-15)}}{78}\normalsize = 13.8029716}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{89(89-85)(89-78)(89-15)}}{85}\normalsize = 12.6662563}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{89(89-85)(89-78)(89-15)}}{15}\normalsize = 71.7754523}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 85, 78 и 15 равна 13.8029716
Высота треугольника опущенная с вершины A на сторону BC со сторонами 85, 78 и 15 равна 12.6662563
Высота треугольника опущенная с вершины C на сторону AB со сторонами 85, 78 и 15 равна 71.7754523
Ссылка на результат
?n1=85&n2=78&n3=15
Найти высоту треугольника со сторонами 118, 116 и 83
Найти высоту треугольника со сторонами 131, 94 и 72
Найти высоту треугольника со сторонами 87, 74 и 51
Найти высоту треугольника со сторонами 110, 85 и 34
Найти высоту треугольника со сторонами 149, 96 и 81
Найти высоту треугольника со сторонами 132, 93 и 74
Найти высоту треугольника со сторонами 131, 94 и 72
Найти высоту треугольника со сторонами 87, 74 и 51
Найти высоту треугольника со сторонами 110, 85 и 34
Найти высоту треугольника со сторонами 149, 96 и 81
Найти высоту треугольника со сторонами 132, 93 и 74