Рассчитать высоту треугольника со сторонами 86, 79 и 74
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{86 + 79 + 74}{2}} \normalsize = 119.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{119.5(119.5-86)(119.5-79)(119.5-74)}}{79}\normalsize = 68.7610453}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{119.5(119.5-86)(119.5-79)(119.5-74)}}{86}\normalsize = 63.1642161}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{119.5(119.5-86)(119.5-79)(119.5-74)}}{74}\normalsize = 73.4070619}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 86, 79 и 74 равна 68.7610453
Высота треугольника опущенная с вершины A на сторону BC со сторонами 86, 79 и 74 равна 63.1642161
Высота треугольника опущенная с вершины C на сторону AB со сторонами 86, 79 и 74 равна 73.4070619
Ссылка на результат
?n1=86&n2=79&n3=74
Найти высоту треугольника со сторонами 122, 103 и 93
Найти высоту треугольника со сторонами 125, 115 и 25
Найти высоту треугольника со сторонами 134, 128 и 13
Найти высоту треугольника со сторонами 150, 149 и 16
Найти высоту треугольника со сторонами 98, 92 и 41
Найти высоту треугольника со сторонами 73, 57 и 38
Найти высоту треугольника со сторонами 125, 115 и 25
Найти высоту треугольника со сторонами 134, 128 и 13
Найти высоту треугольника со сторонами 150, 149 и 16
Найти высоту треугольника со сторонами 98, 92 и 41
Найти высоту треугольника со сторонами 73, 57 и 38