Рассчитать высоту треугольника со сторонами 86, 80 и 70
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{86 + 80 + 70}{2}} \normalsize = 118}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{118(118-86)(118-80)(118-70)}}{80}\normalsize = 65.6097554}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{118(118-86)(118-80)(118-70)}}{86}\normalsize = 61.0323306}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{118(118-86)(118-80)(118-70)}}{70}\normalsize = 74.9825776}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 86, 80 и 70 равна 65.6097554
Высота треугольника опущенная с вершины A на сторону BC со сторонами 86, 80 и 70 равна 61.0323306
Высота треугольника опущенная с вершины C на сторону AB со сторонами 86, 80 и 70 равна 74.9825776
Ссылка на результат
?n1=86&n2=80&n3=70
Найти высоту треугольника со сторонами 149, 105 и 85
Найти высоту треугольника со сторонами 110, 109 и 24
Найти высоту треугольника со сторонами 130, 123 и 120
Найти высоту треугольника со сторонами 132, 129 и 113
Найти высоту треугольника со сторонами 149, 134 и 70
Найти высоту треугольника со сторонами 38, 24 и 19
Найти высоту треугольника со сторонами 110, 109 и 24
Найти высоту треугольника со сторонами 130, 123 и 120
Найти высоту треугольника со сторонами 132, 129 и 113
Найти высоту треугольника со сторонами 149, 134 и 70
Найти высоту треугольника со сторонами 38, 24 и 19