Рассчитать высоту треугольника со сторонами 86, 83 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{86 + 83 + 55}{2}} \normalsize = 112}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{112(112-86)(112-83)(112-55)}}{83}\normalsize = 52.8669207}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{112(112-86)(112-83)(112-55)}}{86}\normalsize = 51.0227258}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{112(112-86)(112-83)(112-55)}}{55}\normalsize = 79.7809895}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 86, 83 и 55 равна 52.8669207
Высота треугольника опущенная с вершины A на сторону BC со сторонами 86, 83 и 55 равна 51.0227258
Высота треугольника опущенная с вершины C на сторону AB со сторонами 86, 83 и 55 равна 79.7809895
Ссылка на результат
?n1=86&n2=83&n3=55
Найти высоту треугольника со сторонами 100, 89 и 71
Найти высоту треугольника со сторонами 137, 137 и 132
Найти высоту треугольника со сторонами 150, 111 и 68
Найти высоту треугольника со сторонами 96, 90 и 51
Найти высоту треугольника со сторонами 150, 101 и 97
Найти высоту треугольника со сторонами 148, 132 и 44
Найти высоту треугольника со сторонами 137, 137 и 132
Найти высоту треугольника со сторонами 150, 111 и 68
Найти высоту треугольника со сторонами 96, 90 и 51
Найти высоту треугольника со сторонами 150, 101 и 97
Найти высоту треугольника со сторонами 148, 132 и 44