Рассчитать высоту треугольника со сторонами 87, 84 и 6

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{87 + 84 + 6}{2}} \normalsize = 88.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{88.5(88.5-87)(88.5-84)(88.5-6)}}{84}\normalsize = 5.28568412}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{88.5(88.5-87)(88.5-84)(88.5-6)}}{87}\normalsize = 5.10341915}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{88.5(88.5-87)(88.5-84)(88.5-6)}}{6}\normalsize = 73.9995777}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 87, 84 и 6 равна 5.28568412
Высота треугольника опущенная с вершины A на сторону BC со сторонами 87, 84 и 6 равна 5.10341915
Высота треугольника опущенная с вершины C на сторону AB со сторонами 87, 84 и 6 равна 73.9995777
Ссылка на результат
?n1=87&n2=84&n3=6