Рассчитать высоту треугольника со сторонами 88, 81 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{88 + 81 + 46}{2}} \normalsize = 107.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{107.5(107.5-88)(107.5-81)(107.5-46)}}{81}\normalsize = 45.6380426}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{107.5(107.5-88)(107.5-81)(107.5-46)}}{88}\normalsize = 42.0077438}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{107.5(107.5-88)(107.5-81)(107.5-46)}}{46}\normalsize = 80.3626402}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 88, 81 и 46 равна 45.6380426
Высота треугольника опущенная с вершины A на сторону BC со сторонами 88, 81 и 46 равна 42.0077438
Высота треугольника опущенная с вершины C на сторону AB со сторонами 88, 81 и 46 равна 80.3626402
Ссылка на результат
?n1=88&n2=81&n3=46
Найти высоту треугольника со сторонами 98, 75 и 36
Найти высоту треугольника со сторонами 141, 100 и 71
Найти высоту треугольника со сторонами 134, 84 и 67
Найти высоту треугольника со сторонами 140, 115 и 58
Найти высоту треугольника со сторонами 68, 62 и 39
Найти высоту треугольника со сторонами 117, 90 и 36
Найти высоту треугольника со сторонами 141, 100 и 71
Найти высоту треугольника со сторонами 134, 84 и 67
Найти высоту треугольника со сторонами 140, 115 и 58
Найти высоту треугольника со сторонами 68, 62 и 39
Найти высоту треугольника со сторонами 117, 90 и 36