Рассчитать высоту треугольника со сторонами 88, 84 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{88 + 84 + 57}{2}} \normalsize = 114.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{114.5(114.5-88)(114.5-84)(114.5-57)}}{84}\normalsize = 54.9237564}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{114.5(114.5-88)(114.5-84)(114.5-57)}}{88}\normalsize = 52.427222}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{114.5(114.5-88)(114.5-84)(114.5-57)}}{57}\normalsize = 80.9402725}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 88, 84 и 57 равна 54.9237564
Высота треугольника опущенная с вершины A на сторону BC со сторонами 88, 84 и 57 равна 52.427222
Высота треугольника опущенная с вершины C на сторону AB со сторонами 88, 84 и 57 равна 80.9402725
Ссылка на результат
?n1=88&n2=84&n3=57
Найти высоту треугольника со сторонами 97, 51 и 48
Найти высоту треугольника со сторонами 105, 89 и 48
Найти высоту треугольника со сторонами 121, 113 и 43
Найти высоту треугольника со сторонами 90, 70 и 21
Найти высоту треугольника со сторонами 145, 121 и 31
Найти высоту треугольника со сторонами 83, 63 и 21
Найти высоту треугольника со сторонами 105, 89 и 48
Найти высоту треугольника со сторонами 121, 113 и 43
Найти высоту треугольника со сторонами 90, 70 и 21
Найти высоту треугольника со сторонами 145, 121 и 31
Найти высоту треугольника со сторонами 83, 63 и 21