Рассчитать высоту треугольника со сторонами 89, 59 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{89 + 59 + 35}{2}} \normalsize = 91.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{91.5(91.5-89)(91.5-59)(91.5-35)}}{59}\normalsize = 21.9697158}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{91.5(91.5-89)(91.5-59)(91.5-35)}}{89}\normalsize = 14.5641936}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{91.5(91.5-89)(91.5-59)(91.5-35)}}{35}\normalsize = 37.0346639}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 89, 59 и 35 равна 21.9697158
Высота треугольника опущенная с вершины A на сторону BC со сторонами 89, 59 и 35 равна 14.5641936
Высота треугольника опущенная с вершины C на сторону AB со сторонами 89, 59 и 35 равна 37.0346639
Ссылка на результат
?n1=89&n2=59&n3=35
Найти высоту треугольника со сторонами 133, 133 и 130
Найти высоту треугольника со сторонами 131, 98 и 38
Найти высоту треугольника со сторонами 145, 144 и 69
Найти высоту треугольника со сторонами 80, 58 и 44
Найти высоту треугольника со сторонами 138, 75 и 74
Найти высоту треугольника со сторонами 99, 85 и 28
Найти высоту треугольника со сторонами 131, 98 и 38
Найти высоту треугольника со сторонами 145, 144 и 69
Найти высоту треугольника со сторонами 80, 58 и 44
Найти высоту треугольника со сторонами 138, 75 и 74
Найти высоту треугольника со сторонами 99, 85 и 28