Рассчитать высоту треугольника со сторонами 89, 66 и 38

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{89 + 66 + 38}{2}} \normalsize = 96.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{96.5(96.5-89)(96.5-66)(96.5-38)}}{66}\normalsize = 34.4356434}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{96.5(96.5-89)(96.5-66)(96.5-38)}}{89}\normalsize = 25.5365445}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{96.5(96.5-89)(96.5-66)(96.5-38)}}{38}\normalsize = 59.8092753}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 89, 66 и 38 равна 34.4356434
Высота треугольника опущенная с вершины A на сторону BC со сторонами 89, 66 и 38 равна 25.5365445
Высота треугольника опущенная с вершины C на сторону AB со сторонами 89, 66 и 38 равна 59.8092753
Ссылка на результат
?n1=89&n2=66&n3=38