Рассчитать высоту треугольника со сторонами 89, 72 и 20
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{89 + 72 + 20}{2}} \normalsize = 90.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{90.5(90.5-89)(90.5-72)(90.5-20)}}{72}\normalsize = 11.6882056}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{90.5(90.5-89)(90.5-72)(90.5-20)}}{89}\normalsize = 9.45562697}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{90.5(90.5-89)(90.5-72)(90.5-20)}}{20}\normalsize = 42.07754}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 89, 72 и 20 равна 11.6882056
Высота треугольника опущенная с вершины A на сторону BC со сторонами 89, 72 и 20 равна 9.45562697
Высота треугольника опущенная с вершины C на сторону AB со сторонами 89, 72 и 20 равна 42.07754
Ссылка на результат
?n1=89&n2=72&n3=20
Найти высоту треугольника со сторонами 137, 129 и 45
Найти высоту треугольника со сторонами 146, 141 и 132
Найти высоту треугольника со сторонами 130, 99 и 44
Найти высоту треугольника со сторонами 90, 54 и 48
Найти высоту треугольника со сторонами 121, 88 и 84
Найти высоту треугольника со сторонами 70, 63 и 54
Найти высоту треугольника со сторонами 146, 141 и 132
Найти высоту треугольника со сторонами 130, 99 и 44
Найти высоту треугольника со сторонами 90, 54 и 48
Найти высоту треугольника со сторонами 121, 88 и 84
Найти высоту треугольника со сторонами 70, 63 и 54