Рассчитать высоту треугольника со сторонами 90, 78 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{90 + 78 + 13}{2}} \normalsize = 90.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{90.5(90.5-90)(90.5-78)(90.5-13)}}{78}\normalsize = 5.36847015}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{90.5(90.5-90)(90.5-78)(90.5-13)}}{90}\normalsize = 4.65267413}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{90.5(90.5-90)(90.5-78)(90.5-13)}}{13}\normalsize = 32.2108209}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 90, 78 и 13 равна 5.36847015
Высота треугольника опущенная с вершины A на сторону BC со сторонами 90, 78 и 13 равна 4.65267413
Высота треугольника опущенная с вершины C на сторону AB со сторонами 90, 78 и 13 равна 32.2108209
Ссылка на результат
?n1=90&n2=78&n3=13
Найти высоту треугольника со сторонами 129, 79 и 67
Найти высоту треугольника со сторонами 135, 123 и 60
Найти высоту треугольника со сторонами 145, 125 и 84
Найти высоту треугольника со сторонами 47, 45 и 21
Найти высоту треугольника со сторонами 149, 125 и 117
Найти высоту треугольника со сторонами 141, 123 и 82
Найти высоту треугольника со сторонами 135, 123 и 60
Найти высоту треугольника со сторонами 145, 125 и 84
Найти высоту треугольника со сторонами 47, 45 и 21
Найти высоту треугольника со сторонами 149, 125 и 117
Найти высоту треугольника со сторонами 141, 123 и 82