Рассчитать высоту треугольника со сторонами 90, 89 и 43
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{90 + 89 + 43}{2}} \normalsize = 111}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{111(111-90)(111-89)(111-43)}}{89}\normalsize = 41.9640043}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{111(111-90)(111-89)(111-43)}}{90}\normalsize = 41.4977376}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{111(111-90)(111-89)(111-43)}}{43}\normalsize = 86.8557298}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 90, 89 и 43 равна 41.9640043
Высота треугольника опущенная с вершины A на сторону BC со сторонами 90, 89 и 43 равна 41.4977376
Высота треугольника опущенная с вершины C на сторону AB со сторонами 90, 89 и 43 равна 86.8557298
Ссылка на результат
?n1=90&n2=89&n3=43
Найти высоту треугольника со сторонами 95, 90 и 22
Найти высоту треугольника со сторонами 57, 53 и 11
Найти высоту треугольника со сторонами 141, 132 и 122
Найти высоту треугольника со сторонами 33, 26 и 23
Найти высоту треугольника со сторонами 137, 104 и 53
Найти высоту треугольника со сторонами 146, 120 и 59
Найти высоту треугольника со сторонами 57, 53 и 11
Найти высоту треугольника со сторонами 141, 132 и 122
Найти высоту треугольника со сторонами 33, 26 и 23
Найти высоту треугольника со сторонами 137, 104 и 53
Найти высоту треугольника со сторонами 146, 120 и 59