Рассчитать высоту треугольника со сторонами 91, 46 и 46
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{91 + 46 + 46}{2}} \normalsize = 91.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{91.5(91.5-91)(91.5-46)(91.5-46)}}{46}\normalsize = 13.3807085}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{91.5(91.5-91)(91.5-46)(91.5-46)}}{91}\normalsize = 6.76387463}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{91.5(91.5-91)(91.5-46)(91.5-46)}}{46}\normalsize = 13.3807085}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 91, 46 и 46 равна 13.3807085
Высота треугольника опущенная с вершины A на сторону BC со сторонами 91, 46 и 46 равна 6.76387463
Высота треугольника опущенная с вершины C на сторону AB со сторонами 91, 46 и 46 равна 13.3807085
Ссылка на результат
?n1=91&n2=46&n3=46
Найти высоту треугольника со сторонами 118, 100 и 67
Найти высоту треугольника со сторонами 146, 139 и 122
Найти высоту треугольника со сторонами 106, 95 и 15
Найти высоту треугольника со сторонами 91, 65 и 49
Найти высоту треугольника со сторонами 120, 80 и 68
Найти высоту треугольника со сторонами 136, 134 и 6
Найти высоту треугольника со сторонами 146, 139 и 122
Найти высоту треугольника со сторонами 106, 95 и 15
Найти высоту треугольника со сторонами 91, 65 и 49
Найти высоту треугольника со сторонами 120, 80 и 68
Найти высоту треугольника со сторонами 136, 134 и 6