Рассчитать высоту треугольника со сторонами 91, 70 и 27
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{91 + 70 + 27}{2}} \normalsize = 94}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{94(94-91)(94-70)(94-27)}}{70}\normalsize = 19.2397548}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{94(94-91)(94-70)(94-27)}}{91}\normalsize = 14.7998114}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{94(94-91)(94-70)(94-27)}}{27}\normalsize = 49.8808457}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 91, 70 и 27 равна 19.2397548
Высота треугольника опущенная с вершины A на сторону BC со сторонами 91, 70 и 27 равна 14.7998114
Высота треугольника опущенная с вершины C на сторону AB со сторонами 91, 70 и 27 равна 49.8808457
Ссылка на результат
?n1=91&n2=70&n3=27
Найти высоту треугольника со сторонами 138, 122 и 64
Найти высоту треугольника со сторонами 91, 84 и 84
Найти высоту треугольника со сторонами 85, 77 и 59
Найти высоту треугольника со сторонами 145, 125 и 33
Найти высоту треугольника со сторонами 46, 45 и 9
Найти высоту треугольника со сторонами 147, 132 и 62
Найти высоту треугольника со сторонами 91, 84 и 84
Найти высоту треугольника со сторонами 85, 77 и 59
Найти высоту треугольника со сторонами 145, 125 и 33
Найти высоту треугольника со сторонами 46, 45 и 9
Найти высоту треугольника со сторонами 147, 132 и 62