Рассчитать высоту треугольника со сторонами 91, 83 и 80

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{91 + 83 + 80}{2}} \normalsize = 127}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{127(127-91)(127-83)(127-80)}}{83}\normalsize = 74.0935292}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{127(127-91)(127-83)(127-80)}}{91}\normalsize = 67.5798123}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{127(127-91)(127-83)(127-80)}}{80}\normalsize = 76.8720365}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 91, 83 и 80 равна 74.0935292
Высота треугольника опущенная с вершины A на сторону BC со сторонами 91, 83 и 80 равна 67.5798123
Высота треугольника опущенная с вершины C на сторону AB со сторонами 91, 83 и 80 равна 76.8720365
Ссылка на результат
?n1=91&n2=83&n3=80