Рассчитать высоту треугольника со сторонами 91, 85 и 10
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{91 + 85 + 10}{2}} \normalsize = 93}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{93(93-91)(93-85)(93-10)}}{85}\normalsize = 8.26897315}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{93(93-91)(93-85)(93-10)}}{91}\normalsize = 7.72376613}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{93(93-91)(93-85)(93-10)}}{10}\normalsize = 70.2862718}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 91, 85 и 10 равна 8.26897315
Высота треугольника опущенная с вершины A на сторону BC со сторонами 91, 85 и 10 равна 7.72376613
Высота треугольника опущенная с вершины C на сторону AB со сторонами 91, 85 и 10 равна 70.2862718
Ссылка на результат
?n1=91&n2=85&n3=10
Найти высоту треугольника со сторонами 149, 133 и 129
Найти высоту треугольника со сторонами 132, 123 и 32
Найти высоту треугольника со сторонами 99, 64 и 36
Найти высоту треугольника со сторонами 143, 88 и 62
Найти высоту треугольника со сторонами 76, 44 и 42
Найти высоту треугольника со сторонами 121, 79 и 63
Найти высоту треугольника со сторонами 132, 123 и 32
Найти высоту треугольника со сторонами 99, 64 и 36
Найти высоту треугольника со сторонами 143, 88 и 62
Найти высоту треугольника со сторонами 76, 44 и 42
Найти высоту треугольника со сторонами 121, 79 и 63