Рассчитать высоту треугольника со сторонами 91, 88 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{91 + 88 + 13}{2}} \normalsize = 96}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{96(96-91)(96-88)(96-13)}}{88}\normalsize = 12.8307482}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{96(96-91)(96-88)(96-13)}}{91}\normalsize = 12.4077565}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{96(96-91)(96-88)(96-13)}}{13}\normalsize = 86.8542955}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 91, 88 и 13 равна 12.8307482
Высота треугольника опущенная с вершины A на сторону BC со сторонами 91, 88 и 13 равна 12.4077565
Высота треугольника опущенная с вершины C на сторону AB со сторонами 91, 88 и 13 равна 86.8542955
Ссылка на результат
?n1=91&n2=88&n3=13
Найти высоту треугольника со сторонами 146, 144 и 141
Найти высоту треугольника со сторонами 74, 57 и 35
Найти высоту треугольника со сторонами 137, 135 и 38
Найти высоту треугольника со сторонами 51, 51 и 46
Найти высоту треугольника со сторонами 140, 76 и 67
Найти высоту треугольника со сторонами 149, 122 и 46
Найти высоту треугольника со сторонами 74, 57 и 35
Найти высоту треугольника со сторонами 137, 135 и 38
Найти высоту треугольника со сторонами 51, 51 и 46
Найти высоту треугольника со сторонами 140, 76 и 67
Найти высоту треугольника со сторонами 149, 122 и 46