Рассчитать высоту треугольника со сторонами 92, 59 и 45
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{92 + 59 + 45}{2}} \normalsize = 98}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{98(98-92)(98-59)(98-45)}}{59}\normalsize = 37.3711864}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{98(98-92)(98-59)(98-45)}}{92}\normalsize = 23.9663043}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{98(98-92)(98-59)(98-45)}}{45}\normalsize = 48.9977777}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 92, 59 и 45 равна 37.3711864
Высота треугольника опущенная с вершины A на сторону BC со сторонами 92, 59 и 45 равна 23.9663043
Высота треугольника опущенная с вершины C на сторону AB со сторонами 92, 59 и 45 равна 48.9977777
Ссылка на результат
?n1=92&n2=59&n3=45
Найти высоту треугольника со сторонами 106, 95 и 45
Найти высоту треугольника со сторонами 78, 77 и 59
Найти высоту треугольника со сторонами 139, 107 и 99
Найти высоту треугольника со сторонами 108, 76 и 45
Найти высоту треугольника со сторонами 135, 107 и 60
Найти высоту треугольника со сторонами 120, 98 и 69
Найти высоту треугольника со сторонами 78, 77 и 59
Найти высоту треугольника со сторонами 139, 107 и 99
Найти высоту треугольника со сторонами 108, 76 и 45
Найти высоту треугольника со сторонами 135, 107 и 60
Найти высоту треугольника со сторонами 120, 98 и 69